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Statement of the problem. A scheme of a six-sided prismatic statically determinate spatial girder is pro-
posed. The task is set by induction to derive formulas for the dependence of the deflection of the structure 
and the lower limit of the main frequency of natural vibrations on the number of panels along the height 
of the prism. 
Materials and methods. The forces in the rods along with the reactions of the supports are found in an 
analytical form by means of the method of cutting nodes in the Maple symbolic mathematics system. One 
of the nodes at the base of the truss has a spherical support, one has a cylindrical support, the remaining 
four supports are racks. The top deflection is determined by the Maxwell-Mohr formula. From the analy-
sis of the sequences of coefficients in the formulas for individual structures with a different number of 
panels, their common members are determined, which are included in the desired calculation formula. 
The Dunkerley method is used to estimate the first frequency of free oscillations. 
Results. For various types of loads, formulas for the dependence of girderf deflections on the number of 
panels are obtained. The coefficients in the solution are polynomial in the number of panels. The derived 
analytical dependence of the first frequency on the number of panels in comparison with the numerical 
solution has a small error, which decreases with increasing number of panels. 
Conclusions. A design of an axisymmetric statically determinate tower-type girder has been developed, 
which allows analytical solutions to the problem of deflection and the problem of the first natural fre-
quency for an arbitrary number of panels. The resulting formulas can be used to assess the accuracy of 
numerical solutions and for preliminary calculations of models of structures of this type. 
 

Keywords: hexagonal prism, spatial girder, deflection, induction, Maple, natural frequency, Dunkerley method, analy-
tical solution. 
 
Introduction. To calculate deformations and natural frequencies of spatial building structures in en-

gineering practice, numerical methods based on the finite element method are used [2, 6, 18]. In cal-

culations of complex systems containing a large number of elements, an inevitable error occurs in the 

accumulation of rounding errors resulting in a a loss of accuracy [2, 21]. If the structure being calcu-

lated is a regular one, inductive methods can be applied to it for obtaining analytical dependencies of 

the value under study on the order of the system, e.g., on the number  of  panels or on occasionally re- 
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peating groups of rods. Using this method in the computer mathematics system Maple [23, 24], some 

solutions to the problem of deflection were obtained for flat lattice [9, 11, 15], arched [10, 20] and 

spatial girders[14, 17]. Formulas for the lower limit of the first natural frequency using the 

Donckerley method for an arbitrary number of panels were obtained in [16, 19]. 

Analytical methods using variational principles in the system of symbolic mathematics were used in 

[3––5]. The variational method is applicable for calculating regular and arbitrary structures. The 

induction method for calculating structures is used for regular systems with occasionally repeating 

groups of rods (e.g., panels) and typically gives simple calculation formulas [1]. The method is 

based on a generalization of a series of relatively simple analytical solutions to the problem of de-

flection of girders to an arbitrary order of their regularity. The induction method is used mainly for 

statically determinate systems. The problem of the existence of statically definable regular construc-

tions was first addressed by R. G. Hutchinson, N. A. Fleck, F. W. Zok, R. M. Latture, M. R. Begley 

[7, 8, 22]. Schemes of flat statically definable regular trusses and formulas for calculating their de-

flections in the case of various loads are provided in the author’s reference books [12, 13]. 

In this study, we set forth a diagram of a statically determinate spatial tower-type truss (Fig. 1, 2), 

consisting of six identical faces with a cross-shaped lattice. The farm has n tiers of height h, except 

for the upper dome-shaped one of height h/2. The supports of the structure are four posts, a spheri-

cal hinge support A and a cylindrical one B. 

 
 

Fig. 1. Girder, n = 4 
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The braces of the cross-shaped lattice have the length 2 2d a r  . The hexagonal dome of height 

h/2 rests on the nodes of the upper contour. The racks of the tiers have a height of h. The girder con-

tains 18 3sn n   rods including nine support ones. The task is to derive analytical dependences of 

the deflection of a structure under the influence of various loads on the number of panels and to ob-

tain a formula for a lower estimate of the first frequency of its natural vibrations. 

 

 
 

Fig. 2. Numbering of nodes of the i-th circuit 
 

1. Calculation of the forces. We will calculate the forces in the rods and all the transformations 

necessary to derive the required formulas in the Maple system of symbolic mathematics [1, 24]. 

The coordinates of the nodes are entered into the software program. The origin of coordinates is 

chosen on the axis of a cylinder of radius r circumscribed around the tower (Fig. 2). The 

coordinates of the lattice nodes have the form: 

6( 1) 6( 1) 6( 1) 1cos , sin , ( 1), / 3, 1,..,6, 1,.., .i j i j i jx r y r z h j i i j n                  

The coordinates of the hinges of the racks on the base are 

6 1 6 1 6 1cos , sin , , / 3, 1,..,6,i n i n i nx r y r z u i i                

where u is an arbitrary number, e.g., 1 (length of support posts). The racks are assumed to be rigid, 

and their lengths are not included in the solution. Vertex C coordinates are 

6 1 6 1 6 10, 0, ( 1/ 2).n n nx y z h n       
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The structure of rod connections is specified by the lists , 1,...,i sT i n  of the numbers of the ends of 

the corresponding rods. The faces (vertical rods) are coded, e.g., in the following way:  

6 6( 1)

6( 1)

[6 ,6 1],
[ 6( 1), 6 1], 1,..,5, 1,.., 1.

n j

i j

T j j
T i j i j i j n

 

 

 

       
 

Based on the data on the coordinates of the nodes and the order of connecting the rods into nodes, 

the coefficients of the equilibrium equations of the nodes are calculated in projections onto three 

coordinate axes. The system of linear equilibrium equations has the form: AS = B where A  is the 

matrix of coefficients (direction cosines of the forces in the rods), S  is the vector of all the un-

known forces. The number of the forces also includes nine support reactions. The vector compo-

nents B  are node forces. For  node i three consecutive elements of the vector are highlighted B . 

The elements with type numbers 3i - 2 include external horizontal forces in projection on the x axis, 

and elements 3i - 1 - on the y axis. The vertical loads are in elements numbered 3i. 

Under the action of a uniform vertical (Fig. 3) load on the six upper nodes and the vertex, the non-

zero elements of the vector elements numbered such as 3i – 2  external horizontal forces are entered 

in the projection on the x axis, in elements 3i - 1 - on the y axis. The vertical loads are in elements 

numbered 3i. 

Under the action of a uniform vertical (Fig. 3) load on the six upper nodes and the vertex, the non-

zero elements of the vector have the form: 3 , 6 5,...,6 1.iB G i n n      

 
Fig. 3. Lateral (wind) load P and a vertical one G onto the girder, n = 3 
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2. Deflection. Vertical load. To calculate the vertical displacement of the top C of the structure, the 

Maxwell-Mohr formula is used:  
9

1
,

sn
j j j

j

S s l
EF





   where E is the elasticity modulus of the rods; F is their 

cross-sectional area;  jl  and jS  is the length and force in the j-th rod under the load; js  is the force of a 

vertical force. Nine support rods are assumed to be non-deformable and are not included in the total. 

For different n, the following expressions for deflection are obtained: 

3 3 2
1

3 3 3 2
2

3 3 3 2
3

3 3 3 2
4

( 8 ) / (12 ),
( 14 8 ) / (12 ),
( 28 8 ) / (12 ),
( 42 8 ) / (12 ),...,

G c r h
G c h r h
G c h r h
G c h

EF
EF

EFh
E

r
F

  

   

   

   

 

where 2 24c r h  . The coefficients at 3c  and 3r  do not change. A common member of the se-

quence of the coefficients at 3h  can be found by using Maple tools. As a result, the dependence of 

the deflection on the number of panels will take the form: 

   3 3 3 2
1 2 3 /  ,C r C c C h FG h E    

where 1 2 32 / 3, 1/12, 7 1 / 6.( )C C C n     
3. Horizontal load. The wind load in the x-axis direction can be modeled by nodal forces on the 

three leeward faces of the truss (Fig. 3): 

3 2

3 2

, 6 1,
, 6 ,6 1,6 5, 1,..., 1.

i

j

B P i n
B P j i i i i n





  
     

 

The deflection is calculated using the horizontal displacement of vertex C. The vector of the right side of 

the system of equilibrium equations for nodes in projection onto the coordinate axes for identifyng the 

forces js  in the Maxwell-Mohr formula has a single non-zero component: 3 2 1, 6 1iB i n    . The se-

quence of solutions turns out to be more complex: 

3 3 2
1

3 3 3 3 2
2

3 3 3 3 2
3

3 3 3 3 2
4

3 3 3 3 2
5

( ) / (4 ),
(21 396 652 164 ) / (24 ),
(18 726 5112 19 ) / (12 ),

(17 1040 15832 140 ) / (8 ),
(33 2724 71928 35 ) / (24 ),...

P c r a EF
P c d h r a EF
P c d h r a EF

P c d h r a EF
P c d h r a EF  .

  

    

    

    

    

 

In the general case, we have the form of the solution:  

    3 3 3 3 2
1 2 3 4 /  P C r C c C d C h r EF    .  (1) 
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To determine the coefficients in (1), which are common members of the sequence of coefficients at 

powers of sizes, the operators rgf_findrecur and rsolve of the Maple system are used. The coeffi-

cients in (1) have the form: 

 
1

2
2 3

4 3 2
4

(8(7( 1) 9) 41( 1) 51) / 24,

(5 3) / 8, (53 91 ( 1) 37) / 4,

(950 3076 3436 4(14( 1) 397) 17( 1) 239) / 48.

n n

n

n n

C n

C n C n n

C n n n n

     

      

        

  (2) 

4. Numerical example. To construct graphs for solving the problem of wind load (1), (2), the 

height of the structure is fixed H nh  and the total load on all nodes of the side faces

(3 1)sumP P n  . A dimensionless deflection of the top C is introduced: ' / ( )sumEF P H  . The 

obtained dependence of the deflection on the radius reveals a minimum (Fig. 4). That enables one to 

choose the optimal ratio of the radius r and height H of the truss in terms of rigidity. As the height h 

increases, so does the value of the optimal radius r. 

Fig. 4. Dependence of the deflection  
on the radius r 

with a horizontal load: n = 4;  
I — 9H   m;  

II — 10H   m;  
III — 11H   m 

 
Deflection curves have asymptotes whose angle of inclination can be calculated using the limit op-

erator of the Maple system. The angle depends on the number of panels: 

3 2lim '/ ( ) / (24 ).954 24(7( 1) 31) (85( 1) 57) 47( 1) 99n n n

r
nr n n H


           

5. Estimation of the first natural frequency of oscillations of the girder. Let us consider a 

model of horizontal vibrations of a truss with masses m located in all its nodes, except for the 

six support ones. The number of degrees of freedom in this formula is 6 5.N n   The calcula-

tion of the oscillation frequencies of a system with a lot of degrees of freedom is possible only 

in numerical form. A lower estimate of the first frequency can be obtained analytically using the 

Donckerley method: 
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 2 2

1

N

D k
k

 



   ,  (3) 

where k  is the oscillation frequency of a mass m in the node of the girder. The vibration equation 

written for one mass has a scalar form: 

0,k k kmx d x   

where kx  is the horizontal displacement of a mass;  kx  is the acceleration;  kd  is the rigidity coeffi-

cient. The oscillation frequency (partial frequency) of the mass is /k kd m  . In order to identify 

the rigidity coefficient, the inverse of the compliance coefficient, the Maxwell-Mohr formula is used: 

 
9 2( )

1
1/ / ( )

sn
k

k kd S l EF


 


    . 

Let us denote ( )kS
  are the forces in the rod with the number from the action of a unit horizontal 

force applied to node k where the mass is located. According to (3): 

 2

1
.

N

D k n
k

m m



       (4) 

Sequentially calculating the sum n , a general view of the solution is found:  

 3 3 3 3 2
1, 2, 3, 4, )( ) / (n n n n nC r C c C d C h r EF     ,  (5) 

and the following sequence of the formulas is obtained:  

3 3 3 2
2

3 3 3 3 2
3

3 3 3 3 2
4

3 3 3 3 2
5

8( ) / (3 ),
(124 23 1110 6620 ) / (9 ),
2(217 23 1599 20778 ) / (9 ),
(110 23 2116 47740 ) / (3 ),...

r d h r EF
r c d h r EF

r c d h r EF
r c d h r EF  .

   

    

    

    

 

For sequence 8/3, 6620/9, 13852/3, 47740/3…. of the coefficients at 
3h  the operator  rgf_findrecur 

yields a recurrent solution:  

4, 4, 1 4, 2 4, 3 4, 4 4, 5 4, 6 4, 73 5 5 3n n n n n n n nC C C C C C C C             . 

In order to obtain this equation, it was necessary to write the analytical solutions for girders with the 

number of panels from 2 to 14. The rsolve operator yields a solution for the coefficient 4,nC  

 4 3 2
4, (2676 12128 18934 102 ( 1) 11974 165( 1) 2555) / 36.n n

nC n n n n n           (6) 

Similarly, but in a somewhat simpler manner, we obtain the remaining coefficients of the desired 

formula: 



Russian Journal of Building Construction and Architecture  
 

108 

 
1,

2,

2
3,

(102 ( 1) 308 201( 1) 571) /18,
23( 2) / 9,

(344 1006 5( 1) 657) / 6.

n n
n

n

n
n

C n n
C n

C n n

     

 

    

  (7) 

We will estimate the error of the lower approximation of solution (4––7) by comparing it with the 

lowest spectrum frequency obtained from a numerical solution to the problem of oscillation of a 

girder with N degrees of freedom. The numerical solution is obtained in the Maple system using the 

Eigenvalues operator for determining the eigenvalues of the matrix from the LinearAlgebra package 

of the Maple system. 

The first frequency curves 1  obtained numerically and D  using formulas (4), (5) with coefficients 

(6), (7) are compared in graph 5 at 52,1 10E MPa  , 3 21,6 10F  м  , 600m  кг , r = 5 m, h = 3 m 

and h = 4 m. As the number of panels increases, so does the accuracy of the analytical assessment. 

This is shown in graph 6 of the relative error 1 1( ) /D      on the number of panels.  

 
 

Fig. 5. Dependence on the number  
of panels 

first natural frequency ωD  
of the spectrum calculated numerically at  

h = 3 m 

 

Fig. 6. Error dependence 
analytical estimate of the lower bound 

first frequency depending on the number  
of panels:  

I — 3H  m; II — 4H  m 

 

Conclusions. The scheme of a spatial statically definable regular tower-type structure is examined. 

An analytical solution has been found to the problem of structural deflections under the influence of 
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various loads for an arbitrary number of panels. It is shown that the dependence of the horizontal 

displacement of the top on the radius of the tower has a minimum. For the corresponding curves, 

oblique asymptotes are found whose angle of inclination is calculated analytically. 

The suggested design can be used in industrial and civil construction, and analytical solutions ena-

ble a simple preliminary calculation of the structure to be obtained at the design stage. 
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