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Abstract: 
The object of research is the problem of the first frequency of free vibrations of a planar statically 

determinate regular beam truss with a mass uniformly distributed over the nodes. Method. The problem 
is solved in the Maple computer mathematics system in symbolic form. The masses oscillate along the 
vertical axis. The solution is sought using the Dunkerley method. The induction method and Maple 
operators were used to generalize a series of analytical solutions for trusses with a successively 
increasing number of panels. Results. The results are compared with a numerical solution obtained as 
the minimum frequency of the entire frequency spectrum and a simplified version of the Dunkerley 
method. It is shown that the accuracy of analytical solutions increases with an increase in the number of 
panels. The spectra of a family of regular trusses of various orders are analyzed numerically. Spectral 
constants, spectral isolines, and resonant safety regions have been identified. 

1 Introduction 

The value of a structure's fundamental (first) natural frequency is the most crucial parameter for 
solving the dynamics problem. Traditionally, this value is calculated for complex structures by the finite 
element method [1], [2]. With the development of computer mathematics systems [3], it became possible 
to obtain analytical solutions. Among all the problems for which analytical methods are available, 
statically determinate rod structures of regular type stand out. These are planar and spatial trusses, the 
periodic element of which is a panel of several rods. Regular constructions were studied in the works of 
Ignatiev V.A. [4] and Kaveh A. [5]. The existence of statically determinate constructions was raised in [6] 
and [7]. The handbook [8] contains various schemes of planar regular trusses and formulas for the 
dependences of the deflection and displacement of movable support on the number of panels and loads 
of several types. Analytical solutions for the first (main) natural frequency were obtained within the 
framework of the approximate Dunkerley approach [9], [10]. Based on the calculation of partial 
frequencies, this method gives a lower estimate of the first frequency. The upper estimate is obtained 
using the Rayleigh energy method [11], [12]. Calculation formulas using the Rayleigh method are more 
complex and cumbersome than those using the Dunkerley method. In [13] and [14], simplified methods 
for calculating the first frequency are proposed. Algorithms for deriving analytical solutions to problems 
of the stress-strain state of structures in the Maple computer mathematics system using the superposition 
method and expansion of solutions into series in terms of initial functions are considered in [15], [16]. 
The problem of a spatial truss in a nonlinear formulation was solved by V.V. Galishnikova [17]. A lower 
analytical estimate for the fundamental natural frequency of a planar regular truss was obtained in [18]. 
The formula for the first frequency of natural vibrations of the spatial model of an L-shaped bracket was 
derived by the induction method in [19]. The fundamental frequency of a planar Fink truss was calculated 
analytically in [20]. The static deflection of a planar truss for an arbitrary number of panels in the Maple 
system was calculated in [21]. The analytical dependence of the first frequency of free vibrations of a 
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planar two-span truss was obtained in [22]. In [23], using the Dunkerley method, an analytical calculation 
of the first frequency of a flat statically determinate trussed structure was performed. 

This paper considers a new scheme of a planar statically determinate regular truss with a reinforced 
lattice. Due to the vertical truss elements, the lengths of the upper chord rods are reduced, increasing 
their stability. The mass of the truss is evenly distributed among its nodes. The task is to obtain an 
analytical dependence of the truss's main (first) natural frequency on the number of panels using the 
Dunkerley partial frequency method and the proposed method, which simplifies and refines the solution. 
Both solutions are compared with the numerical one. For higher frequencies, spectra of trusses of various 
orders are constructed and studied. The goal is to identify practically significant features of the frequency 
distribution. The resulting calculation formulas can serve as a simple and fairly accurate estimate of the 
first vibration frequency of the designed structure. 

 

2 Materials and Methods 

2.1 Truss scheme, drawing up equations 
The planar truss model has 2n panels per span and consists of 16 4nη = +  elastic hinged rods, 

including three rods corresponding to the left movable and right fixed supports (Fig. 1). The rods of the 
upper compressed chord are two times shorter than the rods of the lower stretched chord, which 
increases the stability of the structure concerning the stability of the chords. 

 
Fig. 1. – Truss scheme, n=4 

The method of cutting nodes is used [24] to determine the forces in the rods. Analytical 
transformations associated with the compilation and solution of a system of algebraic equations for the 
equilibrium of nodes are performed in the Maple system. The reference system is introduced, and the 
coordinates of the nodes are specified. The origin of coordinates is in the left movable support A (Fig. 2): 
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Fig. 2. – Numbering of truss nodes, n=3 

The topology of the lattice is determined by the order in which the truss bars are connected into 
nodes. The truss rods are assigned lists of their end numbers to do this. The lists are oriented, but the 
choice of beginning and end does not affect the sign of the effort and its magnitude. The following lists 
of numbers correspond, for example, to the top chord bars: 

[ , 1], 1,.., 4 .
i

i i i n   
 

Bottom chord rods: 
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4
[6 1 , 6 2 ], 1,.., 2 .

i n
n i n i i n        

Other rods are coded similarly, including three support rods (one vertical rod is a movable hinge, 
and two are fixed). 

2.2 Calculation of forces in rods 
A system of equilibrium equations for nodes GS=B is compiled and solved to find the forces in a 

statically determinate truss. G is a matrix whose elements are the direction cosines of the forces in the 
rods. Here, S is the vector of all unknown forces and reactions of the supports, and B is the vector of 
nodal loads. For the equilibrium equations of each truss node, two rows are allocated in the matrix G , 
and in the load vector, there are two elements with the same numbers. The projections of external forces 
applied to node i onto the x-axis are included in the odd elements of the load vector 2 1iB − and the even 
elements — the projections of forces on the y-axis. The direction cosines of the force vectors have the 
form: 

,1 ,2 ,1 ,2, ,
( ) / , ( ) / , 1,..., ,

i i i ix i i y i i
l x x l l y y l i        

 

where 2 2
, ,i x i y i

l l l   is the length of rod i. Matrix G  elements on even and odd rows: 

,1 ,1

,2 ,2

2 1, , 2 , ,

2 1, , 2 , ,

/ , / ,

/ , / .
i i

i i

i x i i i y i i

i x i i i y i i

G l l G l l

G l l G l l
  

  

 

   
 

The direction cosines of forces applied to different ends of the same rod have different signs. 
2.3 The first natural frequency of oscillations 

The standard inertial model of a truss, intended for calculating natural frequencies, assumes that 
the entire mass of the truss is distributed evenly over its nodes. All masses m have one degree of freedom 
— movement along the vertical axis y. Thus, the number of degrees of freedom of the system equals the 
number of nodes 8 2K n  . The system of differential equations of mass motion is written in matrix 
form: 

0
K K

 M Y D Y  (1) 

where Y  is the vector of displacements of all K masses, 
K

D  is the rigidity matrix of the system, 

K
M  is the inertia matrix, Y  and is the vector of mass accelerations. In the case of identical masses, the 

inertia matrix is proportional to the unit matrix 
K K

mM I . If we multiply equation (1) on the left by the 

compliance matrix 
K

B , inverse to the stiffness matrix 
K

D . In that case the problem can be reduced to 

the problem of eigenvalues of the matrix 
K

B : ,
K

B Y Y  where 21 / ( )m   is the eigenvalue of 

the matrix, 
K

B    and is the natural frequency of oscillations. The compliance matrix 
K

B  is found using 
the Maxwell–Mohr formula: 

( ) ( )
,

1

/ ( ),i j
i j

b S S l EF


  


   (2) 

where ( )iS  is the force in rod   from the action of a unit vertical external force on node i. The 

oscillation frequency is expressed through eigenvalues   of the compliance matrix 
K

B  and has the form: 

1 / ( )m   (3) 

In the general case, it is impossible to analytically solve the problem of natural vibrations of a truss 
with many nodes. However, there is an approximate method for finding the lower limit of the first 
frequency, allowing an analytical solution. Dunkerley's formula gives a lower bound for this frequency: 
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2 2

1

K

D i
i

  



   (4) 

where 
i

  is the partial frequency of vibration of mass m  located at node i. It is enough to use the scalar 

form of equation (1) to calculate partial frequencies 
i

 :  

0,
i i i

mu d u   

— equation of oscillation of one independent node, where 
i

u  is the vertical displacement of the mass, 

i
u  is its acceleration vector, 

i
d  is the stiffness coefficient (i is the number of the truss node with mass 

m). The oscillation frequency of an individual load located at node i: /
i i

d m  . According to the 
Maxwell–Mohr formula, the stiffness value is calculated through the compliance coefficient: 

 2( )

1

1 / / ( )i
i i

d S l EF


 





    (5) 

From (4) and (5) it follows: 

 22 ( )

1 1 1 1

1
/ ( ) .

K K K
i

D i
i i ii

m m m S l EF m
d



 


 

   

      
 

Analytical calculation of values   in the Maple system for various values of the truss regularity 
order n gives the following sequence: 

3 3 3 2

3 3 3 2

3 3 3 2

3 3 3 2

3 3 3 2

1: (10 8 37 ) / (2 ),
2 : (224 76 167 ) / (4 ),
3: (4598 804 1363 ) / (18 ),
4 : 9(688 72 107 ) / (8 ),
5 : (18506 1280 1757 ) / (10 ),...

n a c h EFh
n a c h EFh
n a c h EFh
n a c h EFh
n a c h EFh

= Σ = + +

= Σ = + +

= Σ = + +

= Σ = + +

= Σ = + +

 

where 2 2 .c a h= +   

The coefficients of the general term of the sequence 3 3 3 2
1 2 3

( ) / ( )C a C c C h h EF     are 
determined by the methods of the Maple system from the solution of linear homogeneous recurrent 
equations: 

4 2
1

2
2

3 2
3

(128 140 45 2) / 45,
(16 3 1) / 3,
(32 44 34 1) / (6 ).

C n n n
C n n
C n n n n

= + − +

= − −

= + + +

 (6) 

As a result, the desired lower estimate of the first natural frequency of free vibrations of the truss 
using the Dunkerley method takes the form:  

 
 3 3 3

1 2 3

.
( )D

EF
h

m C a C c C h
 (7) 

3 Results and Discussion 

3.1 Simplified Dunkerley method 
Even though the resulting formula (7) with coefficients (6) for the first natural frequency is relatively 

simple, it can be further simplified. Such an algorithm is described in [13]. The Dunkerley solution involves 
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summating the squares of the reciprocal values of the partial frequencies 
1

K

i
i



  and the subsequent 

generalization of the resulting sums. This part of the solution can be simplified if the summation is 
replaced by the product of the maximum deflection and half the number of degrees of freedom, using the 

mean value theorem:  


  0 max
1

/ 2.
K

i
i

K  It is easier to generalize and calculate these products found 

for different numbers n to an arbitrary case. The sequence of sums looks like: 
3 3 3 2

3 3 3 2

3 3 3 2

3 3 3 2

0

0

0

0

1: 5(2 2 7 ) / (2 ),

2 : 9(12 4 9 ) / (2 ),

3: 3(38 6 11 ) / (2 ),

4 : 7(88 8 13 ) / (2 ),...

1

1

n a c h EFh

n a c h EFh

n a c h EFh

n a c h EFh

Σ

= + +

= + +

= + +

= +

Σ =

Σ =

=

Σ = +

 

General view of sequence elements for an arbitrary n: 
3 3 3 2

0 4 5 6( ) / ( ),C a C c C h EFhΣ = + +  

where the coefficients are determined by induction: 
2

4

5

6

( )( )
(

.
)

4 1 2 1 / 3,
  4 1 ,

(  4)(2 5 1 / 2)

C n n n
C n n
C n n

= + +
= +
= + +

 (8) 

Thus, the approximate value of the first frequency using the simplified Dunkerley method is written 
as: 

* 2 3 3 3

6
.

(4 1)(2 (2 1) 6 3(2 5) )

EF
h

m n n n a nc n h
 

    
 (9) 

Approximate solution (9) is noticeably simpler than solution (7). 
To estimate the error of approximate solutions for the first frequency Dω  (7) and *ω  (9), it is 

necessary to compare them with the numerical solution obtained for the entire frequency spectrum 
corresponding to the spectrum of the matrix of equation (1). The Eigenvalues operator of the Maple 
system gives the spectrum of the matrix in numerical form. 

The elements of the compliance matrix 
K

B  are formed in the Maple system in a double cycle 

according to pre-calculated magnitudes of forces ( )iS  in all rods from the action of single vertical forces 
on nodes with masses: 

( ) ( )
,

1

/ ( ), , 1,.., .i j
i j

b S S l EF i j K


  


   

Eigenvalues λ  of the matrix 
K

B  give the frequency spectrum of the truss according to formula (3). 
A numerical solution to the problem of the dependence of the first frequency on the number of 

panels and two analytical ones is presented by curves in Figure 3. 
 The mass of loads in the nodes is assumed to be m = 200 kg, the modulus of elasticity of all steel 

rods of the truss is MPa, the cross-sectional area is the same 29F cm , panel length a = 3 m, height h 
= 2 m. The analytical solutions turned out to be very close, and, with an increase in the number of panels, 
they came closer to the numerical solution, which was conventionally accepted as exact since when it 
was found, the problem of oscillation of a system with all degrees of freedom was solved and no 
simplifications were made. 

More precisely, you can evaluate the degree of approximation of analytical solutions by entering 
the values of relative errors 

1 1
| | /

D D
      and 

* * 1 1
| | /     . Figure 4 shows the change in 

these values depending on the number of panels. 
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Fig. 5. –The first oscillation frequency obtained by three methods depending on the number of 
panelsn. The Dunkerley method D , simplified method * , the numerical method 

1
  

For n>2, the Dunkerley method has a slightly larger error than the simplified method. Starting from 
a certain value of n, the accuracy of both methods remains almost unchanged, reaching a completely 
acceptable value of several percent. 

 

Fig. 4. –Relative error of decisions. εD — the Dunkerley method; *ε  — simplified method 

It is known that the Dunkerley estimate of the first natural frequency of trusses is, as a rule, much 
less accurate than in this problem. On average, the error of this method is about 30%. The approximate 
analytical solution (9) was all the more interesting, which gives both a more accurate and simpler solution. 

3.2 Frequency spectra of a regular truss 
Frequency analysis of a structure is not limited to calculating only the first frequency. At higher 

system frequencies, resonant phenomena can be observed, which are very important to foresee. For 
regular structures of various orders, some regularities in the spectra make it possible to predict the higher 
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frequencies of trusses of large order without resorting to calculations but using calculations of simple 
trusses of the same class. In Figure 5, the spectral frequencies obtained numerically are conventionally 
combined by curves of the same color. One graph shows the spectra of trusses of the order of 1, 2,...10. 
The abscissa axis shows the frequency numbers in its spectrum, and the ordinate axis shows the 
frequencies themselves. There are several patterns in this figure. First, numerical calculations show that 
the highest frequency for all trusses of different orders is the same. This is the highest spectral constant 
of the structure, constant for the selected panel dimensions, masses, and elastic properties of the 
material. There are several such spectral constants. In this example, this are 1905 ,sω −=  1748 ,sω −=  

1420 sω −= , etc. "Resonance safety zones" are also observed — intervals in the spectra of natural 
frequencies of trusses of various orders in which no natural frequencies exist. External oscillation drivers, 
for example, a motor installed on a truss, must have a natural frequency in one of these zones to avoid 
resonance. There are several safety zones in this task. For lower frequencies, there are no resonant 
safety zones, or they are very narrow, for example 1 1224 317s sω− −< < .  

 
Fig. 5. – Frequency spectra of trusses of different orders 

Knowledge of spectral constants and safety zones greatly simplifies the analysis of structures with 
many panels. 

4 Conclusions 

Main results of the work: 
1. A mathematical model of a planar statically determinate regular truss has been constructed. 
2. Formulas for the approximate value of the first frequency were obtained by two analytical 

methods based on the inductive generalization of particular solutions. The results are compared with the 
numerical method. It is shown that the simplified Dunkerley method gives a simpler and more accurate 
solution, the error of which decreases with increasing number of panels. 

3. Spectral constants and resonance safety zones were discovered in the spectra of the family of 
regular trusses. 

5 Fundings 

The work was carried out with the financial support of the Russian Science Foundation 22-21-
00473. 

References 
1  Colajanni, P., La Mendola, L., Latour, M., Monaco, A. and Rizzano, G. (2015) FEM Analysis of 

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


This publication is licensed under a CC BY-NC 4.0 
 

 

Kirsanov, M.  
Formula for natural frequency oscillation truss with an arbitrary number of panels; 
2023; Construction of Unique Buildings and Structures; 109 Article No 10918. doi: 10.4123/CUBS.109.18 

Push-out Test Response of Hybrid Steel Trussed Concrete Beams (HSTCBs). Journal of 
Constructional Steel Research, Elsevier, 111, 88–102. 
https://doi.org/10.1016/J.JCSR.2015.04.011. 

2  Han, Q.H., Xu, Y., Lu, Y., Xu, J. and Zhao, Q.H. (2015) Failure Mechanism of Steel Arch Trusses: 
Shaking Table Testing and FEM Analysis. Engineering Structures, Elsevier, 82, 186–198. 
https://doi.org/10.1016/J.ENGSTRUCT.2014.10.013. 

3  Zotos, K. (2007) Performance Comparison of Maple and Mathematica. Applied Mathematics and 
Computation, Elsevier, 188, 1426–1429. https://doi.org/10.1016/j.amc.2006.11.008. 

4  Ignatiev, V.A. (1973) Calculation of Regular Rod Systems. Saratov Higher Military Chemical 
Military School, Saratov. https://elibrary.ru/item.asp?id=28958501. 

5  Kaveh, A. (2013) Optimal Analysis of Structures by Concepts of Symmetry and Regularity. Optimal 
Analysis of Structures by Concepts of Symmetry and Regularity, Springer-Verlag Wien, 
9783709115, 1–463. https://doi.org/10.1007/978-3-7091-1565-7. 

6  Hutchinson, R.G. and Fleck, N.A. (2005) Microarchitectured Cellular Solids - The Hunt for 
Statically Determinate Periodic Trusses. ZAMM Zeitschrift fur Angewandte Mathematik und 
Mechanik, 85, 607–617. https://doi.org/10.1002/zamm.200410208. 

7  Hutchinson, R.G. and Fleck, N.A. (2006) The Structural Performance of the Periodic Truss. Journal 
of the Mechanics and Physics of Solids, Pergamon, 54, 756–782. 
https://doi.org/10.1016/j.jmps.2005.10.008. 

8  Kirsanov, M. (2019) Planar Trusses: Schemes and Formulas. Cambridge Scholars Publishing 
Lady Stephenson Library, Newcastle upon Tyne, GB. 
https://www.cambridgescholars.com/product/978-1-5275-5976-9. 

9  Levy, C. (1991) An Iterative Technique Based on the Dunkerley Method for Determining the 
Natural Frequencies of Vibrating Systems. Journal of Sound and Vibration, Academic Press, 150, 
111–118. https://doi.org/10.1016/0022-460X(91)90405-9. 

10  Low, K.H. (2000) A Modified Dunkerley Formula for Eigenfrequencies of Beams Carrying 
Concentrated Masses. International Journal of Mechanical Sciences, Pergamon, 42, 1287–1305. 
https://doi.org/10.1016/S0020-7403(99)00049-1. 

11  Vorobev, O.V. (2020) Bilateral Analytical Estimation of the First Frequency of a Plane Truss. 
Construction of Unique Buildings and Structures, 92, 9204–9204. 
https://doi.org/10.18720/CUBS.92.4. 

12  Kirsanov, M. and Ivanitskii, A. (2023) Bilateral Analytical Estimation of the Natural Oscillation 
Frequency of a Planar Triangular Truss. AlfaBuild, 26, 2601. https://doi.org/10.57728/ALF.26.1. 

13  Kirsanov, M. (2023) Simplified Dunkerley Method for Estimating the First Oscillation Frequency of 
a Regular Truss. Construction of Unique Buildings and Structures, 108. 
https://doi.org/10.4123/CUBS.108.1. 

14  Kirsanov, M.N. (2022) Energy Collocation Method for the Truss Fundamental Frequency 
Estimation. Structural mechanics and structures, 36, 27–37. 
https://doi.org/10.36622/VSTU.2023.36.1.003. 

15  Galileev, S.M. and Matrosov, A. V. (1995) Method of Initial Functions in the Computation of 
Sandwich Plates. International Applied Mechanics, Kluwer Academic Publishers-Plenum 
Publishers, 31, 469–476. https://doi.org/10.1007/BF00846800. 

16  Goloskokov, D.P. and Matrosov, A. V. (2016) A Superposition Method in the Analysis of an 
Isotropic Rectangle. Applied Mathematical Sciences, 10. 
https://doi.org/10.12988/ams.2016.67211. 

17  Galishnikova V.V. (2019) Nonlinear Numerical Stability Analysis of Space Trusses. EG-ICE 2010 
- 17th international workshop on intelligent computing in engineering. 
https://www.elibrary.ru/item.asp?id=43274656. 

18  Komerzan, E. V., Maslov, A.N. (2023) Analytical Evaluation of a Regular Truss Natural Oscillations 
Fundamental Frequency. Structural Mechanics and Structures, 37, 17–26. 
https://doi.org/10.36622/VSTU.2023.37.2.002. 

19  Komerzan, E. V., Maslov, A.N. (2023) Estimation of the L-Shaped Spatial Truss Fundamental 
Frequency Oscillations. Structural Mechanics and Structures, 37, 35–45. 
https://doi.org/10.36622/VSTU.2023.37.2.004. 

20  Petrichenko, E.A. (2020) Lower Bound of the Natural Oscillation Frequency of the Fink Truss. 
Structural Mechanics and Structures, 26, 21–29. https://www.elibrary.ru/item.asp?id=44110287. 

21  Dai, Q. (2021) Analytical Dependence of Planar Truss Deformations on the Number of Panels. 

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


This publication is licensed under a CC BY-NC 4.0 
 

 

Kirsanov, M.  
Formula for natural frequency oscillation truss with an arbitrary number of panels; 
2023; Construction of Unique Buildings and Structures; 109 Article No 10918. doi: 10.4123/CUBS.109.18 

AlfaBuild, 17, 1701. https://doi.org/10.34910/ALF.17.1. 
22  Petrenko, V.F. (2021) The Natural Frequency of a Two-Span Truss. AlfaBuild, 2001. 

https://doi.org/10.34910/ALF.20.1. 
23  Manukalo, A.S. (2023) Analysis of a Planar Sprengel Truss First Frequency Natural Oscillations 

Value. Structural Mechanics and Structures, 37, 54–60. 
https://doi.org/10.36622/VSTU.2023.37.2.006. 

24  Buka-Vaivade, K., Kirsanov, M.N. and Serdjuks, D.O. (2020) Calculation of Deformations of a 
Cantilever-Frame Planar Truss Model with an Arbitrary Number of Panels. Vestnik MGSU, 4, 510–
517. https://doi.org/10.22227/1997-0935.2020.4.510-517. 

 

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	1 Introduction
	2 Materials and Methods
	2.1 Truss scheme, drawing up equations
	2.2 Calculation of forces in rods
	2.3 The first natural frequency of oscillations

	3 Results and Discussion
	3.1 Simplified Dunkerley method
	3.2 Frequency spectra of a regular truss

	4 Conclusions
	5 Fundings
	References

