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1. KupcanoB M.H. I'pa¢b1 B Maple. 3agauu, aaropurmMmsl, IporpaMmbl. —
M.: U3gareabcTtBo PUSMATIIUT, 2007. — 168 c. — ISBN 5-7046-1168-0.

OCHOBHOWM UCTOYHMK NPU HAaNUCaHMUM NPOrPaMMbI.
M3 KHWUMM BblIM B3ATbI METOAbI, ONUCAHHbIE NPU peleHrn 3a4a41M KOMMUBOSAKepa (rnasa 4.8).
MypasbuHbii anroputm Mapko fopwuro.

OyHKUMA, yNPaBAAIoLLAA NEPEXOLOM U3 AAHHOM BEPLUMHDI i B BEPLUMHY j , K — HOMep MypaBbs,
ABVXKyLLeroca no ayram rpada:
B
P = TN
k=3
S TN

raoe 7;; — Koan4yecTtBso pepPOMOHaA, OCTaBZIEHHOTO oboTom Ha re [i,j]; n;;— BennunHa, obpaTtHas Bec
tj tj

(nnvHe) pymv [i, j]; @, B — amnupuryeckne KosboULMEHTHI.

&)

Puc. 4.58

Mycmo mypaeseli k nodowen kK Hekomopol sepwiuHe 8 U 06HAPYHUs, YMO nepeod HUM 7 803MOMHbIX
nymeli K cemu 8epuUuHam (Ha yxe npolioeHHble oH BHUMAHUA He obpawaem). Kyda uomu? Mypaseli
dosepsemcs cayyaro. OH «nyckaem pyaemky» (puc. 4.58).

ANroputTm MMMUTaLLMM OTKUra.
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100
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Puc. 4.59

Ecnu nonyyeHHbIl mapwpym say4dule 8cex Cywecmeosasiux paHee, mo amom mapuwipym 6epemca 3a
ouepedHoli. Ecnu mapwpym xyxe, mo camolli npocmoli eapuaHm — amo He 6pame e2o (3a4yem
yxyowams peweHue?). OOHaKO MaK peweHue Moxem 3aKamumaocs 8 00UH U3 10KA/1bHbIX MUHUMYMOS,

KomopbiMmu u3obunyrom nodobHsie 3a0a4u (puc. 4.59).
BepoaTHOCTb BbIGOpa XyALIEro pelleHuns:
P = exp(—AL/T)

rae AL — nonoxuTenbHas Pa3HOCTb meXxay Ka4eCTBOM TECTUPYEMOTO U



paHee NoJ/iy4YeHHOro ONTMMabHOro peweHnit, T — HEKOTOPbIN NOCTOAHHO YMEHbLIAoWMINCA napameTp
(ychoBHo — Temnepartypa).

CHuXeHMe TemnepaTypbl 06bI4HO NpoussoauTca no popmyne T, 1 = aly ,roe 0 < a < 1.



2. Turk ] Elec Engin, VOL.15, NO.2 2007, TUBITAK - A Review of Studies
in Swarm Robotics - Levent BAYINDIR and Erol SAHIN

B cTaTbe aBTOPbI KNaccuduumnposanu npobaembl rpynnosoit poboTOTEXHUKN U UCCNeA0BaHNA B AaHHOM
obnactn.

— Sensor-Based

Modeli = Microscopic
e i
b = Macroscopic

- Cellular Automata| KneTtouHble aBToMaThI

— Nonadaptive

Behavior 2 Reinforcement
: e e — -
Design Learming Learning

- Evolution

o Interaction via Sensing
—» Communication i . .
Interaction via Communication

- Analytical Studies

—= Pattern Formation
—m Aggregation
— Chain Formation
— Self-assembly

——»= Problems .
—# Coordinated Movement

—m Hole Avoidance
- Foraging
= Self-Deployment

Figure 1. Taxonomy of Swarm Robotics Literature. The taxonomy is divided into five main axes namely modeling,
behavior design, communication, analytical studies and problems.

Knaccuoumkaums nccnenosaHuii no rpynnosoii poboToTexHMKe. 5 0CHOBHbIX 06/1acTel: nocTpoeHne mogenei
nccnenoBaHuie, MoaennpoBaHue noseseHnsa poboTos, B3anMoencTene poboTos, aHaIMTUYECKUE UCCIEA0BAHNA U

npobiemaTtuKa.




3. Donald Miner - University of Maryland, Baltimore County - 2007
[class paper] "Swarm Robotics Algorithms: A Survey" (pdf) ~ CMSC 677 -
Agent Architectures and Multi-agent Systems

B cTaTbe paccmaTpuBatoTCa 6 aropMTMOB yNpaBaeHWs rpynnammn poboTos (6 3a4a4 1 pelueHuii B
rpynnax poboToB), AaeTcs KpaTKNiM 0630p COBPEMEHHOTO COCTOAHMA AaHHOW 061acTM UCCNeaoBaHUMA.

MpuBeaeHHbIe SKCNEPUMEHTbI MOKA3bIBAIOT, YTO AAHHbIE aNTOPUTMbI MaclUTabupyembl, yCTOMUYMBDI K
ownbKam n apeKTUBHBI.

Bce npuBeaeHHbIe aITOPUTMbI UCMbITbIBA/IMCh B peasbHbIX rpynnax poboTos Ha npoekTax The iRobot
Swarm u Swarm-bots project (koopanHatop Mapko Jopuro).

1. Dispersion in Indoor Environments (3agaya paBHOMEPHOro pacnpeaeneHuns B 3aKpbIToOM
nomeLl,eHnn)

Figure 6: The iRobot swarm uniformly dispersed over a somewhat complex environment (left) and
an open space (right).

PeweHue: oTtankmeaHue ot C 6AMKANLWINX cocesieit. DKCNepUMEHTbI MOKa3bIBakoOT, YTO /lydLlune
pe3ynbtatbl Npu C = 2.

2. Distributed Localization and Mapping (3agaya pacnpegeneHHoro pasmeL,eHnsa U CoCTaBNeHUn
KapTbl)

Figure 7: A visualization of the distributed mapping algorithm. The left image shows the map
contribution of a single robot. The right image shows all the robots’ personal maps superimposed
on one another.



PeweHue:
1. Move in a general direction while maintaining a X, Y coordinate based on local beacons (masku).

2. If the number of beacons goes below a certain threshold, become a beacon and start broad-casting position information to
others.

3. If the number of dependent modules goes below a certain threshold, stop being a beacon and return to step 1.

3. Mobile Formations (3agaya nepemelleHNs NOKaNbHOM rpynnbl poboToB K Lenn Yepes rpynny
npensaTcTBuiA)
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Figure 8: A visualization of forty robots (small black dots) going towards a goal (black square).
They must avoid obstacles (large red dots) while still maintaining a tight formation.

4. Cooperative Hole Avoidance (3agaya KonnektuBHoro obbesaa am)

Figure 9: Four connected S-bots moving through a hlole riddled environment.

(riddle — pewemo, ceamo)



5. Chain Based Path Formation (3agauya popmnMpoBaHUA LLenu Mexay «rHe3aom» 1 «406bluein»)

T T e ®
@ 2
A~ INest

Figure 10: A wvisualization of S-bots (small colored circles) forming a chain from a “nest” io a
“prey.” Each S-bot must be able to see (range given by thin grey circle) other s-bots in the chain.

(nest - e2He300, prey - 0obbiya)

Figure 11: A picture of S-bots forming a chain from the nest to the prey.

6. Group Transport (3agava rpynnoBoi TPaHCNOPTUPOBKK)

Exploration Module Transport Module
Chain_found Ex Prey_found /\ Prey_close  Assembly_successful Transpore
Chain_lost o Target

' Tail of chain (Tail_of_chain /"\P.) ' '

Scarch /N Y Assembl

Are c : :

P.. (Prey_found /\Pfcy_not_cbsc) Chain_found Chain_lost

i Al '

Chain lost | . Prey found /"\ Prey_very_close Transport
Blind
Timer_T... Reset |~ Timer T,

Figure 12: The state diagram of the control program of each S-bot for this algorithm.

Figure 13: A picture of S-bots dragging the prey to the nest.



4. P. Valdastri, P. Corradi, A. Menciassi, T. Schmickl, K. Crailsheim, ].
Seyfried, P. Dario, "Micromanipulation, Communication, Swarm
Intelligence Issues in a Swarm Microrobotic Platform," Robotics and
Autonomous Systems, 54 (2006) 789-804.

B cTaTbe onucbiBaeTca HoBaa naatpopma (nporpamma) gns nccnenosaHuUa rpynn MUKPopoboTos ¢
LeNbio NPUMEHEHNA POEBOro MHTENIEKTa Ha NPaKTUKE.

PaccmatpusaeTca moaenvpoBaHue rpynnbl MUKPOPOBOTOB, Y KOTOPbIX CTOMT 3343a4a cobpaTb BCIO Mblb
13 AByx obnacteit n nepemecTuTb eé B NbliecbopHUK (31 obnacTb).

OrpaHuyeHua po6oTos:

1. Po60T 06HapyKMBaeT MbiAb UAM NbINeCOOPHUK, TONBKO €CAN OH HEMOCPEeACTBEHHO HaXx0AMUTCA B 3TUX
obnacTax («cTouT» Ha HUX).

2. Po60Tbl B3aMoaencTBYIOT APYr C APYroM NOCPeACcTBOM CBETOANOAOB Ha paccTosHumn 3-4
COBCTBEHHbIX ANAMETPOB.

OnTumanbHoe nosegeHue poboToB (C yUETOM OrpaHUUYEHMit):

1. Ncnonb3oBaHue «OT poboTa K poboTYy» KOMMYHMKALMK, 418 TOFO, YTOObI ONpeaenTb NoNoXKeHME
uenesbix obsacren.

2. Po60Tbl A0NXHbI UCMONb30BaTb BCE NPEUMYLLLECTBO BO/bLLOIO pasmepa pos ANA A0KaAn3auuu
obnacren.

3. Po60T MOKET NOTEPATb YACTULY MblAKN, MOSTOMY ONTUMA/bHbIA BapUAHT ABUMKEHUS K NblAeCOOPHUKY
Mo KpaTyanmLiemy paccToOAHMIO.

Ana mogenupoBaHuA ucnoib3osanacb nporpamma LaRoSim V0.42, sbinonHeHHasa Ha NetLogo 3.02.



Fig. 12. A screenshot of the LaRoSim simulation platform. The screenshot
shows the typical “cleaning”-scenario simulated within this platform: The two
blue-coloured floor areas represent “dusty™ areas that have to be cleaned by
the robot swarm autonomously. Empty robots (red boxes) head towards these
areas. As soon as they pick up a dust particle they are coloured in blue. These
loaded robots then head towards the yellow dump area to drop the particle there.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

CuHue obnactn — obnacTu ¢ Nbinblo, XKenTas 061acTb — NblNecbopHUK, cMHME PobOoTbl — POBOTLI C
YyacTMLaMM Mblan.

[nAa onpepeneHna HanpaBAeHUA ABUXKEHUA, PO6OTbI UCNOAb3YIOT CTpaTernio coobuieHus,
OCHOBaHHYI0 Ha BeKTopax (The “vector-based” communication strategy).

(a)

Robot 2

Fig. 13. (a) Vectorial sum for target direction reconstruction. (b) An example of the swarm formation induced by
vector propagation within a group of 5 robots.



OCHOBHbIe HAaCTPOUKM NPOrpammbl (C y4ETOM OrpaHMYEHMI A BO3MOXKHOCTEN Npeanoiaraemoi
annapatypbl)

Table 1
Default parameter settings used in the simulation experiments described in this
article

Parameter Value
Arena-size 49 x 49 rd
Dust-particles 72 particles
Robot-speed 0.5 rd/step
Error-distance-measure |1 0%
Error-in-communication 10%
Communication-radius 35rd
Number-of-LEDs 4
Inter-LED-angle 90°
LED-beam-aperture 60°

P (communication-break) 0.1
Communication-capacity 32 bit/message
Dust-in-arena 72 particles

This table gives only those parameters that reflect hardware constraints and
arena features. The strategy-parameters, that are shaped by artificial evolution,
are described separately. The unit “rd” represents the maximum diameter of one
robot.

BBopg, oTpuuaTenbHbIX 05paTHbIX cBaseit n o6HOBNEHME m-lcbopmau,uu B cucrteme

B npupose B KOEKTUBHOM MOBEAEHNN NPUCYTCTBYET OTpULIaTeNbHaA obpaTHasA cBA3b (Mpumep —
ncnapeHve ¢pepomoHa y MypaBbeB), B MporpaMme TOXKe BBOAMUTCA OTpuLaTe/ibHas obpaTHan cBA3b.

(1) Use-hop-count: ncnonb3oBaTtb M CYETYMK NEPEXOA0B A/1A KaXKA0ro BeKTopa (MHKpeMeHT, Koraa
HOBas CBA3b ycTaHaBAMBaeTca). MpeaoTBpallaeT «pa3pacTaHue» CTapoin MHGOPMaLIMKN O CBA3AX B
cucteme. TRUE nnm FALSE.

(2) p(vector-forget): BepoATHOCTb CTUPaHUA MHOPMaALUM O BEKTOPaAX M3 NamATu poboTa. CpabaTbiBaeT
Ha Kaxgom Lware pobora. [0, 1]

(3) Is-Scout: asnaeTca nu poboT passesunkom. Ecam asnaerca, To poboT He ncnoib3yeT MHGOPMALIMIO O
BEKTOPaX (YKasblBatOLLMX Ha 061aCTH € NbINbIO UK NbiNecbOPHUMK), KaK cneacTeue, Takne poboTbl He
cobupatoTca B 04HOM MecTe M NOCTOAHHO 61yKAatoT, NnepeaaBas MHopmaumio apyrum pobotam. TRUE
nnn FALSE.

(4) “weight-find-dust” un “weight-find-dump” — BeposATHOCTb Cief0BaHMA HanpaBaeHuto BekTopa. [0, 1]
Pe3synbTatbl

[Ona dopmmnpoBaHMA poa NCNONb30BANCA FEHETUYECKUI anropuTm. Becero popmmposanoch 120
NMoKoNeHn poes. B Kaxaom nokoneHum 10 poes.



[na oueHKM KayecTea pos 6bina Mcnonb3osaHa fitness-pyHKumA: 40 OUKOB 3a AOCTABKY YaCTULbI MbLIV B
nblnecbopHUK, 20 33 HAXOXKAEHME YACTMLbI NbIN, HO B Aa/IbHENLLEM YacTULA TepsAnack. 3a KaxKaoe

ymeHbleHune nytn 10 oykos.
JKcTpemasbHble 3HauveHua fitness-pyHKLMM:
2860 0YKOB: HWXKE 3TOMO 3HAUYEHMA KaXKAbl PO HeyAauHbI — He BblIM AOCTaBAEHbI BCE YaCTULbI MblAN.

8360 04KOoB: camoe BbicoKoe 3HadeHue fitness-pyHKUMK. Bblno gocTUrHYTO 3a 250 waros (HaumeHbLee

BpemsaA paboTbl Nporpammsi).

(a) Evolutionary run (b) Settings of "Top-250" swarms
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Fig. 14. (a) Results of the “Evolutionary Strategy”. Throughout 120 generations, more-and-more effective swarms
evolved, what is expressed by the absolute fitness. The dashed line indicates the maximum amount of fitness points
a swarm can achieve without removing all dust particles in the arena. In total, 1200 simulation runs are depicted in
the left subfigure. (b) Two related parameters, p(vector-forget) and fraction-scouts, that evolved in specific
combinations. This subfigure shows the 250 fittest swarms that evolved between generations 35 and 100 (the
“plateau” in the left subfigure). The two dashed lines indicate that the 250 best swarms show a negative
correlation between these two parameters. Two swarms at the extremes of these settings are depicted in Fig. 16 at

runtime.

[lByMm 3KCTpemanbHbIM 3HaueHMsaM Ha puc. 14(b) cooTeeTcTByeT cnesytowee pacnonoxeHve poboTos Ha

puc. 16.



(a) (b) g

ok

Fig. 16. (a) Screenshot of one type of very fit swarms. This type (type 1) has a low fraction of scouts in the swarm
(8%) and a high p(vector-forget)=0.29. (b) A screenshot of the other type of very fit swarms. This type (type 2) has
a high scout-to-worker ratio (27%) and a low value of p(vector-forget)=0.14. These different parameter settings
result in different global behaviour but in the same swarm efficiency, as it was measured by our fitness function.
The swarm in the right figure shows a more intensive aggregation of empty robots around the dust areas, the left
swarm builds several “sub-swarms” that are narrowly connected.

Table 2

The parameters that evolved during our Evolutionary Strategy

Parameter Type 1: Type 2:
Absolute fitness 7771 points 7766 points
Density-of-robots 11.8% 13.2%
Fraction-scouts 8% 27%
p(vector-forget) 0.29 14%
Use-hop-count true true
Priority-coll-avoid-dist 0.4 sr 0.41 sr
Empty-coll-avoid-dist 0.65 sr 0.77 sr
Loaded-coll-avoid-dist 0.25 sr 0.27 sr
Priority-signal-scouts FALSE FALSE
Priority-signal-loaded TRUE TRUE
Weight-find-dust 0.83 0.82
Weight-find-dump 0.94 1.00

The table shows the parameter settings of the two swarm types that are
displayed in Fig. 16. The unit “sr” refers to the sensory radius of the robots,
which was set to 3.5 rd (robot diameters).
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Fig. 15. The importance of the parameter “use-hop-count” for the vector-based strategy. If this parameter is set to
TRUE, than the goal is achieved much more quickly (a), more dust is removed (b), fewer collisions happen (c) and
the dust particles are carried on a shorter way to the dump area (d). All figures show medians and third quartiles. N
= 12 per setting (per bar).
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Fig. 17. The optimal density of the robot swarm is evaluated. (a) With a density between 0.1 and 0.15, the swarms
finished their work in the shortest period. (b) Swarm densities between 0.1 and 0.2 allowed successful cleaning of
the whole arena. (c) Swarms with densities between 0.1 and 0.15 showed the lowest collision rate per robot. (d)
Densities between 0.1 and 0.15 led to the lowest mean carriage periods per dust particle. All figures show medians
and third quartiles. N = 6 per setting (per bar).



5. Schmickl, Thomas; Thenius, Ronald; Moeslinger, Christoph;
Radspieler, Gerald; Kernbach, Sergej; Szymanski, Marc; Crailsheim, Karl;
"Get in touch: cooperative decision making based on robot-to-robot
collisions”. In: Autonomous Agents and Multi-Agent Systems (2008), 1 -
23.

B ctatbe ncenenyeTtca peanbHaa rpynna p06OTOB, moaennpyrowmnx noeegeHne HOBOpPoOXKAEHHbIX
pa60lmx n4yesn Ha NI0CKOCTU C Pa3HbIMU TEMNEPATYPHbIMU 30HaAMMW.

M3BeCcTHO, YTO NUYénbl NpM BbIBOpe MecTa c/ieaytoT TeMMnepaTypHbIM NpeanoyuTeHUaM, U BbIGBUpatoT gns
ceba Hanbonee KOMPOPTHYLO TemnepaTypy. s HOBOPOXKAEHHbIX pabounx nuén sta Temnepatypa 34 —
38 rpaa. no Uenbcuto. EANHCTBEHHaA nyena byaeT ABUraTbCsA No NAOCKOCTU C Pas3/IMYHbIMMI
TemnepaTypHbIMU 061aCTAMK MNOYTM CAyYaiiHbIM 06pa3om (Yalle Bbibupas bonee Ténnoe mecto). Ho
rpynna u3 15 nuén byget yctouneo ¢opmmMpoBaThb KnacTepbl B TENA0M obiacTu.

Fig.1 Navigation behaviour of young bees (1 day old) in a temperature gradient. All figures: The warm area
(approx. 38°C) is on the left side of the arena, as indicated by the dark spot. The right side of the arena had
a temperature of 31°C. Young honeybees prefer temperature between 34°C and 38°C [9]. (a) Trajectory of
one single bee for 8 min. (b—d) Time lapse of the same experiment with 15 bees (30s, 1 min, and 10 min after
the release of the bees in the arena). Bees were released in the colder area on the right side of the arena

MUcxopa u3 Takoro noseaeHua NYén, 6bin NpeanoxKeH anroputm KoAIeKTUBHOIO NoBeAeHUA rpynnbl
po6oToB, HazBaHHbIN BEECLUST.
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Fig. 2 State-diagram of our control algorithm BEECLUST. Rounded boxes represent behavioural states of a
robot, diamonds identify control structures (if-else) and arrows indicate state transitions. Texts at the arrows
indicate probabilities of these transitions ( p-values) or events that trigger a transition

1. All robots move randomly in the arena. Whenever a robot detects an obstacle in front, it stops and listens for
possible collision-avoidance signals. If such signals are detected, the robot assumes that the obstacle is another
robot. If no such signals are detected, the robot assumes that the obstacle is a wall.

2. After a robot encounters a non-robotic obstacle, it turns randomly and continues with step 1.
3. After a robot encounters another robot, it stops and measures the local illuminance.

4. The higher the local illuminance, the longer the robot waits on the place. After the robot has finished its waiting
term, it rotates randomly and proceeds with step 1.

UccnepoBaHuA npoBoAaUAUCH B rpynne poboToB, pearnpylowmx Ha cBerT.
MpoBogununch 2 BUAA UCCNefoBaHUA:

1. Mpu cTaTU4HOM OCBELLEHUM.

2. Mpy AMHAMUYHOM OCBELLEHUM.

UccnepoBaHMA NpoBOAMANCE HA 3 TUMAX OCBELLEHUA:

1. Het cBeTa.

2. TyCKANbI# CBET.

3. ApKunii ceeT.
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Fig. 5 Spatial distribution of illuminance in the arena during the two experiments that focussed on the
collective behaviour of the robotic swarm in a static environment. (a) Spatial distribution of illuminance
within the arena with one dimmed light (3901ux). (b) Spatial distribution of illuminance within the arena with
one bright light (1,1001ux). The third setup with no light in the arena is not shown in the figure. The small
sun-like symbols in the upper sections of the graphs represent the lights® intensities at the respective side. A
striped sun indicates that the light was dimmed; a white sun indicates that the light was bright and the black
sun indicates that the light was switched off
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Fig.6 Timing of our experiments focussing on the behaviour of the robotic swarm in a dynamic environment.

Every 180s the lights’ intensities were modified, thus changing the environmental conditions for the robotic
swarm
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Fig. 7 Spatial distribution of illuminance in the arena during the four distinct phases of our experiments in
the dynamic environment. The small sun-like symbols in the upper sections of the graphs represent the lights’
intensities at the respective light. A striped sun indicates that the light was dimmed; a white sun indicates that
the light was bright and the black sun indicates that the light was switched off



Kpome Toro, ocBeleHHble 30Hbl AeANANUCL Ha 4 NOKabHbIE 30HbI, B 3aBUCUMOCTU OT yAaNeHUs OT
LeHTpa (camoro apKoro mecra).

“.. unassigned .’
areaD areaD
areaC areaC
area B “"area B
areaA : | lareaA
" unassigned "

Fig. 4 Sketch of the four different areas that were used to classify how close each aggregated robot had
approached the spot with the highest illuminance below the corresponding light

Table 1 Radii of the areas

measured from the point of Area Radius
maximum illuminance
A r<Illcm
B 11 <r <22cm
& 22 <r <33cm
D 33 <r <= 66cm

dyHKuUA, OTOBpaKaloLLLaa U3SMEPEHHYIO OCBELLLEHHOCTb Ha BPeMA OXKuAaHua poboTa, Nocse Toro, Kak
OH BCTPETUT Apyroro po6oTa — KoAm3mna «poboT-poboT» (KaoUyeBoe CBOMCTBO asiropnTma, KoTopoe
ynpasafeT Ko/IeKTUBHbIM NoBeaeHnem poboToB.).

s (1)?
Wi(t) = Weax a (1)2 1o
The variable w(t)represents the waiting-time of a robot in seconds, and the variable s(t)represents the sensor
value reported by the light-sensor mounted atop the robot (for more detail see Sect.2.4). The parameter
Whax€Xpresses the maximum waiting time of a robot at locations of maximum (infinite) luminance. The parameter
O models the steepness of the stimulus-response curve, that his how “fast” the waiting time increases with
increasing luminance in the steep part of the sigmoid curve.
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Fig. 11 (a) Number of aggregated robots per interval in a static environment with one bright light (1,100 lux)
in the arena. Approx. 60% of all robots aggregated under this environmental condition. (b) Number of aggre-
gated robots per interval in a static environment with one dimmed light (3901ux) in the arena. Approx. 30%
of all robots aggregated under this environmental condition. (¢) Number of aggregated robots per interval in a
static environment without any light source. This environmental condition always resulted in no aggregation
of robots. Medians, quartiles, and extremes are depicted. N = 6 repetitions with nine sampling intervals each
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Fig. 12 (a) Allocation of all aggregated robots to the four areas. Bars indicate the fractions of all aggregated
robots measured during our experiments with either a dimmed light or a bright light. The line indicates the
numbers of aggregated robots predicted by a model of random-walk and random aggregation. (b) Mean num-
ber of robots per measured interval, normalized according to the different area sizes. Bars indicate the mean
of the number of robots observed in the corresponding area during our experiments with either a dimmed light
or a bright light. Lines indicate the number of aggregated robots predicted by a model of random-walk and of
equivalent mean waiting times as was measured in the real robots for each light condition. N = 6 repetitions
with nine sampling intervals each
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phase: a white sun indicates that the light was bright and the black sun indicates that the light was switched
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6. [lutep Musnep, «PoeBoit uHTEe /UIeKT», National Geographic, Poccus,
aBryct 2007

Te3ucoi:

HwnNe

5.

HMBOTHbIE AENCTBYIOT B UHTEPECAX FPynMbl

HeT HaYaNbHWKOB M NOAYNHEHHbIX

Kaxkgaa ocobb cobntogaet Habop NpocTbIX NpaBuA

OAMH 1 TOT XKe MypaBeit MOXeT cerogHa paboTaTtb 3044MM, a 3aBTpa MycopLUnKkom. Kak?

a. [na Toro 4to6bl PyparkMp NPUHAN pelleHne NOKUHYTb MypaBeNHUK, eMy HEOHX04MMO
BCTPETUTLCA C NAaTPY/bHbIM ONpesesieHHOE KOIMYECTBO Pas, U NMPOMENKYTOK MeEKIY
BCTPEYAMM He JO/IKEH NPEBbIWATL AECATU CEKYHA,

b. YueHble NpULWAKM K BbIBOAY, YTO YacTOTa BCTPEY C NATPY/IbHbIMM NOMOraeT pypaknpam
OLEeHNTb 6e30NacHOCTb 06CTaHOBKM 3a Npesenamm rHesa (ecnm BCTpeym NponucxoaaT ¢
paBHbIMW MHTEPBaZaMM, 3HAYUT, NOPa UATU HA MOUCKU NULLK; ECAN HET — ayylue
NoAoKAaTb: BO3MOXKHO, CHAPYXKW C/IMLLKOM BETPEHO UAN PALSOM C MyPaBENHUKOM
npuTamMnacb ronogHas awepuua).

KaK nuénbl nwyT HoBOE MeCTo A8 ynba?

a. YueHble paccTaBUAM NATb Y/IbEB, U TOJIbKO O4MH M3 HUX 06/1a4an naeanbHbIMU
napameTtpamu. MNuenbi-passeaumLbl BCKOPE OTbICKAM UX BCE, U, BEPHYBLUMCb 06PaTHO K
pOt0, KaXKAas U3 HUX UCMOAHWAA CBOEObPa3HbIA TaHeL, NPU3bIBana CBOMX KO/Er CNeTaTb
N OLEHUTb TO AYNJ10, KOTOPOE el NPUTNAHYAOCh. B 3TUX ABMKeHMAX 3awmdpoBaHa
MHPOPMALMA O MECTOHAXOXKAEHUM N KayecTBe HOBOW Xuannowaam. Yem nyywe
HallleHHan KBapTUpa, Tem ycepaHee byaeT UCNOIHEH TaHeL,

b. OKoHuaTenbHOE peleHne NPUHMMAIM pa3BeaYMLbl. Kak TONbKO Yy BXOAa B Ayno
cobnpanocb OKONO NATHAALATM NYE, OHWU PELLAM, YTO KBOPYM B HA/IMYUK, U CREeLInan
06paTHO, YTOObI 0OMEHATLCA HOBOCTAMM. 3aTEM OHM NOAABANIN POIO CUIHAN, YTO BbIGOP
CAenaH 1M NpULLIa Nopa ABMraTbca B NyTb. Kak TONbKO BCe nyenbl 6b1n roToBbI K
NosIeTy, OHW OTMPABAAZINCE K CBOEMY HOBOMY XUJ/IULLY, KOTOPbIM, KOHEYHO Ke,
CTAHOBW/ICA CaMblii YAOOHbIN U3 NATU YIbEB.

KaK y MFpOKOB Ha CKayKax MoJly4aeTca Tak TOYHO NpeacKasbiBaTb pe3y1bTaTbl 3a€34,087?
MporHo3bl CKayeK, noasasAoWwMecs Ha Tabao ToTanAnsaTopa nepes cTapTom, NOYTH BCeraa
OKa3blBaOTCA BepHbIMU. Jlowaab, Ha KOTOPYIO NOCTaBUI0 60/IbLLIMHCTBO UIPOKOB, MPUXOAUT
nepBoii, cieaytoLlas No CNMCKY — BTOPOM M TaK ganee. MNpuynHa B TOM, YTO TOTA/IM3aTOP — 3TO
NPaKTUYECKU MAeaNbHbIN NPUMEpP NPOABAEHUA UHTENIEKTA TONNMbI.

Y ronybeit HeT BOXKaKa, KOTOPbI 0TAaBana 6bl UM NPUKasbl. Kaxkabiii U3 HUX, Kpy:Ka B Hebe,
npucTanbHO HabogaeT 3a NoBeAEHNEM CBOMX DAMMKANLINX cocesel U cnefyeT HECKOIbKUM
NPOCTbIM NpaBuAamM. ITU NPaBMIA COCTABAAIOT OCHOBY ApPYroi GopmMbl POEBOTO MHTEN/IEKT],
CNYXKALLEN He CTONbKO A1A NPUHATUSA NPABUABHOIO peLleHuns, CKObKO A1 TOYHOM
KOOPANHALNUN ABUNKEHNN.

Mopo6Hble BO3MOXKHOCTU 3anHTepecoBanm Kpelira PeliHonaca, cneumanucTa B obnactm
KOMNbtoTepHOM rpadmkn. B 1986 rogy oH co3gan NpocTyto Ha NepBbli B3rA4 Nporpammy, B
KOTOPOI1 y4aCTBOBA/IM MOXOXKMeE Ha NTUL, PO6OTbI, AN «NTULLOMAbLI». OHWU AO0NKHbI HblaK
cobntoaaTh cneaytolme Tpy NpaBuaa: Bo-NepBblX, HE CTa/IKMBATbCA CO CBOMMM cOBpaTbamM, BO-
BTOpPbIX, BbIOWMPATb CPEAHIO0 TPAEKTOPMIO NOETa, OPUEHTUPYACH HA COCeneN, U, B-TPETbUX,
AepXaTtbca NobaM30cTn OT OCTaNbHbIX Ppob0TOB. Koraa moaenb Havanu TecTMpoBaThb, Ha SKpaHe
KOMMblOTEPa 04YEHb A0CTOBEPHO Obla1 BOCNPOU3BEAEH NOMET NTUYbEN CTAM U AaXKe ee
XaO0TUYHbIE METaHUSA (TOYb-B-TOUYb KaK B PeasibHOCTH).
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11.

12.

370 noBeAeHMe A0BOLHO YacToO NPUMEHSETCA B rpynnoBoi poboToTEXHMKE.

PbIbbl MO NOBeAEHMIO cocesen Cpasy e YyBCTBYHOT, YTO YTO-TO He TaK, NO3TOMY U3BECTUE O
nNpMbAnNKeHUN Bpara B MrHoBeHWe oKa 06/1eTaeT Becb KOCaK

FOBOPMM /I Mbl O MypPaBbAX, NYenax, roflybsax Uam o Kapuby, HaANLO HEU3IMEHHbIE NPUHLMNbI
«YMHOrO» FpynmnoBoro NoBeAeHWA: OTCYTCTBUE KLLEHTPaA YNpPaBieHUA», YMeHMEe OLEHMBaTb
ob6cTaHoBKY, cobtoaeHMe NPOCTbIX NPaBMa. UMeHHO Tak poskaaeTcs apdeKTMBHanA cTpaTerus,
NO3BOAIOLLAA STUM CYLLECTBAM C YCMEXOM BbIXOAUTb M3 C/I0XKHbIX CUTyaUMit. B aTom 1
3aKNHOYAETCA NPUTATATE/IbHAA CUNAa POEBOTO UHTE//IEKTA.

Tonna MOXeT 6bITb YMHOM, TONbKO €C/IM MHAMBUABI HECYT OTBETCTBEHHOCTb 33 CBOM AENCTBUA U
CaMOCTOATE/IbHO NPMHMMAIOT peleHus. Eciu e oHu ByayT cneno KonMposaTb NOBeAEHWE Apyr
ApYra, y40BNETBOPATh TO/IbKO CBOM NPUXOTU WU KAATb, YTO KTO-TO NMOACKAMKET UM, YTO AenaTb,
KONINEKTUB HEe CMOXKET GYHKLMOHMPOBATb YCMELLHO.



7. Cooperation through self-assembly in multi-robot systems
Tuci E., Grofl R,, Trianni V., Mondada F., Bonani M., Dorigo M.

ACM TAAS, Volume 1(2), 115-150, December 2006
Abstract

This paper illustrates the methods and results of two sets of experimepnts in which a group
of mobile robots, called s-bots, are required to physically connect to each other—i.e., to self-
assemble—to cope with environmental conditions that prevent them to carry out their task in-
dividually. The first set of experiments is a pioneering study on the utility of self-assembling
robots to address relatively complex scenarios, such as cooperative object trasport. The results
of our work suggest that the s-bots possess hardware characteristics which facilitate the design of
control mechanisms for autonomous self-assembly. The second set of experiments is an attempt to
integrate within the behavioural repertoire of an s-bot decision making mechanisms to allow the
robot to autonomously decide whether or not environmental contingencies require self-assembly.
The results show that it is possible to synthesise, by using evolutionary computation techniques,
artificial neural networks that integrate both the mechanisms for sensory-motor coordination and
for decision making required by the robots in the context of self-assembly.

(a) ’ (b)

Figure 6: (a) Potential starting points and orientations of the s-bots around the prey. (b) Four s-bots
connected in “star-like” formation around the prey.



Algorithm I - The assembly module
1 activate colour ring in blue

2 repeat
3 (Ni, Na) « featureExtraction(camera)

4 (N3, Ny) « sensorReadings(proximity)
5 (1\'.5, -'\"6» .'\'7) = neuralthwork(;\"l 5 ."\"2, 4 "3., ."\"4)
6
7 if (N7 > 0.5) A (grasping requirements fulfilled)
8 then
9 grasp
10 if (successfully connected)
11 then
12 activate colour ring in red
138 activate transport module
14 else
15 open gripper
16 fi
17 fi

18 apply (N5, Ng) to tracks
19 until timeout reached
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Figure 10: A graphical representation of the task. See text for details.



8. IR-based Communication and Perception in Microrobotic Swarms S.
Kornienko, S. Kornienko Institute of Parallel and Distributed Systems,

University of Stuttgart, Universit[Latsstr. 38, D-70569 Stuttgart, Germany
Abstract

In this work we consider development of IR-based communication and
perception mechanisms for real microrobotic systems. It is demonstrated
that a specific combination of hardware and software elements provides
capabilities for navigation, objects recognition, directional and unidirec-
tional communication. We discuss open issues and their resolution based
on the experiments in the swarm of microrobots ”Jasmine”.
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9. Cooperative Hole Avoidance in a Swarm-bot

Trianni V., Nolfi S., Dorigo M.

Robotics and Autonomous Systems, Volume 54, number 2, pp. 97-103
Abstract

In this paper, we study coordinated motion in a swarm robotic system,
called a swarm-bot. A swarm-bot is a self-assembling and self-organising arti-
fact, composed of a swarm of s-bots, mobile robots with the ability to connect
to and disconnect from each other. The swarm-bot concept is particularly
suited for tasks that require all-terrain navigation abilities, such as space ex-
ploration or rescue in collapsed buildings. As a first step toward the develop-
ment of more complex control strategies, we investigate the case in which a
swarm-bot has to explore an arena while avoiding falling into holes. In such a
scenario, individual s-bots have sensory-motor limitations that prevent them
navigating efficiently. These limitations can be overcome if the s-bots are
made to cooperate. In particular, we exploit the s-bots’ ability to physically
connect to each another. In order to synthesise the s-bots’ controller, we rely
on artificial evolution, which we show to be a powerful tool for the production
of simple and effective solutions to the hole avoidance task.

Keywords: evolutionary robotics, swarm intelligence, swarm robotics,
swarm-bot

fitness

0.2 F I | — best

i o average
O , . :
0 - p s 80 100
generation number
B (b)

Figure 2: Hole avoidance results: (a) Average fitness over 10 replications of the
experiment. (b) Trajectories displayed by a swarm-bot performing hole avoidance.



Table 1: Performance of the best individuals for each replication of the experiment,

averaged over 100 trials. The mean value and the standard deviation are reported.
Replication || 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
Fitness Avg. || 0.66 | 0.65 | 0.65 | 0.61 | 0.58 | 0.64 | 0.69 | 0.64 [ 0.66 | 0.65
Fitness Std. | 0.14 |1 0.12 | 0.14 | 0.19 | 0.10 | 0.16 | 0.12 | 0.15 | 0.13 | 0.16

(a) (b)

() (d)

Figure 3: Generalisation properties. The trajectories and the final position of the
swarm-bot are shown. (a) Size and shape change. A “star” formation is tested in
a square arena (grey area) without holes but with open borders. The trajectories
indicates that the swarm-bot is able to avoid falling out, even if some s-bots are
pushed out from the border. (b) Obstacle avoidance. The square arena with holes
(grey area) is surrounded by walls (dark grey borders). The swarm-bot proves able
to avoid both holes and obstacles. (¢) Obstacle and hole avoidance of a “star” for-
mation with flexible connections. Here the cylindrical obstacles (light grey objects)
create a narrow passage with the edge of the arena (grey area), which is faced by the
swarm-bot trough reconfiguration of its shape. (d) Hole avoidance of a big linear
formation with flexible connections. Here the swarm-bot completely deforms when
it reaches the edge of the arena (grey area), therefore adapting its shape.



10. Dimos V. Dimarogonas, Kostas J. Kyriakopoulos; Connectedness
Preserving Distributed Swarm Aggregation for Multiple Kinematic
Robots. In IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER

Abstract—A distributed swarm aggregation algorithm is devel-
oped for a team of multiple kinematic agents. Specifically, each
agent is assigned a control law, which is the sum of two elements: a
repulsive potential field, which is responsible for the collision avoid-
ance objective, and an attractive potential field, which forces the
agents to converge to a configuration where they are close to each
other. Furthermore, the attractive potential field forces the agents
that are initially located within the sensing radius of an agent to
remain within this area for all time. In this way, the connectivity
properties of the initially formed communication graph are ren-
dered invariant for the trajectories of the closed-loop system. It is
shown that under the proposed control law, agents converge to a
configuration where each agent is located at a bounded distance
from each of its neighbors. The results are also extended to the case
of nonholonomic kinematic unicycle-type agents and to the case of
dynamic edge addition. In the latter case, we derive a smaller bound
in the swarm size than in the static case.
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Fig. 2. Evolution in time of the swarm under (middle) control law (4) for the
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control law leads to a smaller swarm size.
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11. Schmickl, Thomas; Crailsheim, Karl: Trophallaxis within a robotic
swarm: Bio-inspired communication amongrobots in a swarm, in:
Autonomous Robots 25 (1-2) (2008),171 - 188.
Abstract This article presents a bio-inspired communica-
tion strategy for large-scale robotic swarms. The strategy
1s based purely on robot-to-robot interactions without any
central unit of communication. Thus, the emerging swarm
regulates itself in a purely self-organized way. The strat-
egy is biologically inspired by the trophallactic behavior
(mouth-to-mouth feedings) performed by social insects. We
show how this strategy can be used in a collective forag-
ing scenario and how the efficiency of this strategy can be
shaped by evolutionary computation. Although the algo-
rithm works stable enough that it can be easily parameter-
ized by hand, we found that artificial evolution could further
increase the efficiency of the swarm’s behavior. We investi-
gated the suggested communication strategy by simulation
of robotic swarms in several arena scenarios and studied
the properties of some of the emergent collective decisions
made by the robots. We found that our control algorithm led
to a nonlinear, but graduated path selection of the emerging
trail of loaded robots. They favored the shortest path, but
not all robots converged to this trail, except in arena setups
with extreme differences in the length of the two possible
paths. Finally, we demonstrate how the flexibility of collec-
tive decisions that arise through this new strategy can be
used in changing environments. We furthermore show the
importance of a negative feedback in an environment with
changing foraging targets. Such feedback loops allow out-
dated information to decay over time. We found that task

efficiency is constrained by a lower and an upper boundary
concerning the strength of this negative feedback.
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Fig.1 A Morphology of the robots in the used simulation environment
with special emphasis on the communication systems (infrared LEDs,
photo-diodes) and on the movement systems. In this picture, the two
robots can establish a bi-directional communication. All 6 light cones
of robot “a” are drawn; only the one light cone that is involved into a
communication channel is drawn for robot “b”. B Equivalent picture of
the communication-light-beams in our simulator. The focal robot can

Fig.2 Screenshots of all environments in which we tested our swarms. to the dump area. ¢ The same setup, but now one gate offers a shorter
The black ground patches indicate dirt areas in all pictures; the white path. d The setup with a changing environment: At first, only the dump
spot indicated the dump area. The little gray boxes represent the robots in the upper left corner is available. After the robots dropped almost all
in our simulation platform. a The most simple environment. Robots dirt particles there, the dump area is shifted to the lower right corner.
could directly pass from the dirt area to the dump area. b The robots The robots have to pick up the dirt particles again and to move them
could move through two equidistant gates to pass from the dirt area over to the new dump position
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Fig. 3 A This scheme shows the basic principles of the “trophallaxis
derived control strategy”. Robot 1 finds a piece of dirt and increases
its internal variable v by the given addition rate (indicated as “+4a”).
All robots constantly decrease their internal variable v by the given
consumption rate (indicated as “—c”). The variable v is constrained to
be above zero. All robots that are near enough to establish a robot-to-
robot communication link communicate their current values of v and
transfer a fraction of the encountered difference from the robot with
the higher value of v to the robot with the lower value of v(as it is



Fig. 11 Screenshots of the
robotic swarm that performs its
cleaning task in a changing
environment. Black floor
patches: dirt particles, white
floor patches: dump area, grey
boxes: empty robots, dark
boxes; loaded robots. a Initial
settings. b The loaded robots
directly approach the dump area
uphill the gradient of v,. ¢ The
dump is shifted to the lower
right corner of the arena: only a
few empty robots occupy this
area. d The robots pick up the
dirt items again and approach
the new dump area on two trails
around the obstacle
(cross-shaped wall) in the center
of the arena
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Fig. 12 Efficiency of work performed in the changing environment
and with varying values of the consumption-rate (r.2). a With very
low values of the parameter r¢ 2, the swarm of robots needed very
long to finish even the first part of the task (prior to the environmental
fluctuation). This can be seen by the high values of the “mean switch
time”. Higher values of r. 2(= 0.05) lead to quick delivery of parti-
cles at the first dump site and also to a quick movement of these parti-
cles to the shifted dump area (“mean final time™). Very high values of
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re2(= 0.7) lead again to a low performance of the swarm in the fluc-
tuating environment. b With low values (r.2 < 0.05) and with high
values (r.2 > 0.4) of the parameter r, 7. also the time-span between
the triggering of the environmental fluctuation and the final success
time is maximized. In this figure only those runs were considered that
succeeded to finish the second task before the end of the runtime of the
experiment (2400 time steps). N = 10 per setting



12. Schmickl, Thomas; Moeslinger, Christoph; Crailsheim, Karl:
Collective perception in a robot swarm., in: Lecture Notes in Computer
Science 4433 (2007), 144 - 157.

Abstract. In swarm robotics, hundreds or thousands of robots have to reach a
common goal autonomously. Usually, the robots are small and their abilities are
very limited. The autonomy of the robots requires that the robots’ behaviors are
purely based on their local perceptions, which are usually rather limited. If the
robot swarm is able to join multiple instances of individual perceptions to one
big global picture (e.g. to collectively construct a sort of map), then the swarm
can perform efficiently and such a swarm can target complex tasks. We here
present two approaches to realize ‘collective perception’ in a robot swarm. Both
require only limited abilities in communication and in calculation. We compare
these strategies in different environments and evaluate the swarm’s perform-
ance in simulations of fluctuating environmental conditions and with varying
parameter settings.

Fig. 1. A screen shot of our simulation platform LaRoSim. The two black areas (small left and
huge right) represent target areas for aggregation. The gray circles indicate the zones in which
we counted the robots for evaluating the aggregation success. Gray boxes represent robots.
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Fig. 3. (a) The gradient of hop-counts that emerges in the ‘hop-count’ strategy. The robot on
the target sets its hop-count to 0. All robots copy the lowest hop-count from their neighbors and
increase it by 1. After some (ty) time steps, they increase the hop-count spontaneously (‘forget-
ting’). (b) Behavioral program of a robot in the ‘hop-count’ strategy. This program is executed
every time step.
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Fig. 4. (a) The gradient of ‘virtual nectar’ that emerges in the ‘trophallaxis-inspired’ strategy.
The robot at the target adds ‘virtual nectar’ to its memory. All robots exchange fractions of the
‘virtual nectar’ proportionally to the inter-robot differences. All robots consume ‘virtual nectar’
over time, thus they decrease their memory values (‘forgetting’). (b) Behavioral program of a
robot in the ‘trophallaxis-inspired’ strategy. This program is executed every time step.
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Fig. 5. Collective decisions made by the robot swarm in different environments. The dashed
line shows the expected number of robots that would have been in the measurement area (ra-
dius=10 each) if there had been no aggregation behavior at all. N=10 per setting. Bars represent
mean values and whiskers indicate standard deviations. Duration: 250 time steps.
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Fig. 6. The dynamics of the emerging gradients in our experiment. (a-c): The dynamics of the
gradient in the trophallaxis inspired strategy. For generating the picture, we assigned the maxi-
mum memory value of all visible robots to each location in the arena. (d-f): The dynamics of
the gradient in the hop-count strategy. Here we assigned the minimum hop-count of all visible
robots to each position in the arena. Both simulation runs used extreme environmental condi-
tions: The left target was very small (radius=1) and the right target was large (radius=5).



13. Schmickl, Thomas; Moeslinger, Christoph; Thenius, Ronald;
Crailsheim, Karl: Individual adaptation allows collective path-finding in
arobotic swarm, in: International Journal of Factory Automation,
Robotics and Soft Computing (2007). (not published)

Abstract: The coordination of an autonomous ro-
botic swarm requires a control algorithm that is
simple, scalable, robust and flexible. Biological
systems show many kinds of behaviours, which
enable organisms to act efficiently in a dynamic
environment. By mimicking the trophallactic be-
haviour of honeybees (mouth-to-mouth feeding),
we developed a communication scheme and a
navigation algorithm for mobile robots. This al-
lows a swarm of robots to perform collective de-
cision-making based on individual robot naviga-
tion. In this article we present a novel feature of
this algorithm: It allows a robotic swarm to react
to the shape and to the orientation of areas of un-
suitable terrain. We demonstrate that a robotic
swarm using this new algorithm is able to make
near-optimal route choices, i.e. whether to cross
or to avoid an area with unsuitable terrain.
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Figl: (a) The arena setup with one dump (yellow) in
the middle and two dust areas (blue) on the left side
and on the right side. Two areas of unfavourable ter-
rain (green) were placed in between. The four bright
lines indicate the regions where we measured
whether the robots moved on or off the unfavourable
terrains. (b) The path densities of loaded robots
when the value of x (see equation 1.1) was set to 0.
(c) The path densities of loaded robots when x was
set to 1000.

Fig3: Path densities of the loaded robots, moving
from the outer dust areas towards the dump in the
middle. Robots used the optimized values for r.""
and k.



Fig4: Topology of the emerging gradient from the
dump. For better representation the gradient was lin-
earised using the function £Xx,#) (see equation 4.1).
(a) Arena setup. (b) View from above. (¢) View
from left. (d) View from right.

Fig5: Emerging gradients with solid walls (grey and
rectangular objects) replacing the unfavourable ter-
rains. For better representation the gradient was lin-
earised using the function (Xx,f) (see equation
4.1).(a) Arena setup. (b) View from above. (¢) View
from left. (d) View from right.



14. M. Hartbauer and H. Roemer; "A novel distributed swarm control
strategy based on coupled signal oscillators". In Bioinspiration &
Biomimetics, 2, 42-56 (2007)

Abstract

The miniaturization of microrobots is accompanied by limitations of signaling, sensing and
agility. Control of a swarm of simple microrobots has to cope with such constraints in a way
which still guarantees the accomplishment of a task. A recently proposed communication
method, which is based on the coupling of signal oscillators of individual agents [13], may
provide a basis for a distributed control of a simulated swarm of simple microrobots (similar to
I-Swarm microrobots) engaged in a cleaning scenario. This self-organized communication
method was biologically inspired from males of chorusing insects which are known for the
rapid synchronization of their acoustic signals in a chorus. Signal oscillator properties were
used to generate waves of synchronized signaling (s-waves) among a swarm of agents. In a
simulation of a cleaning scenario, agents on the dump initiated concentrically spreading
s-waves by shortening their intrinsic signal period. Dirt-carrying agents localized the dump by
heading against the wave front. After optimization of certain control parameters the properties
of this distributed control strategy were investigated in different variants of a cleaning
scenario. These include a second dump, obstacles, different agent densities, agent drop-out
and a second signal oscillator.



dirt pile\ dump
arena border gpstacle

Figure 1. The appearance of the I-Swarm microrobot, the standard
cleaning scenario and the geometry of the communication system.
A bird’s-eye view of an I-Swarm microrobot is given in (4). Two
solar cells on top of the robot maintain energy supply provided by a
constant light source. Under a cover (gray area) there are four
photodiodes (PDs) and four light emitting diodes (LEDs) facing
different directions. The standard cleaning scenario consists of two
dirt piles (black squares) and a central dump (gray square) as shown
in (B). Two large obstacles can be implemented in a cleaning
scenario. Agents are shown as white dots. A schematic illustration
of the signaling geometry of simulated agents is given in (C). In the
given arrangement a supra-threshold signal is only detected by one
(arrow) of four neighbors in the proximity of a signaling agent.
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Figure 3. Establishment of synchronization waves (s-waves). In a simulation which allows us to study the establishment of s-waves
immobile agents (dots) were randomly distributed in the arena at the beginning. Agents started at a random phase in their oscillator cycle
and signal in the very last phase of their cycle (agents drawn in black). One agent exhibits a slightly faster oscillator cycle and is located at
the lower right corner of the arena. After 50 simulation steps this agent triggers waves of synchronized signaling (s-waves) which spread out

through the arena within only 8 simulation steps. These waves are generated in every oscillator cycle and were used as a guidance cue in the
cleaning scenario.



If (wait-at-dump-cd > 0 and If (cycle-counter < cycle-length) then

strong-signals >= 2 and (random 11) > 5) (cycle-counter = cycle-counter + 1)
then leave-overcrowded-dump 1,

| If (wait-at-dump-cd > 0) then
(wait-at-dump-cd = wait-at-dump-cd - 1)

["change-behavior-state 5
1 |In every 3.| | (dump-refractory-cd> 0 ) then
simulation step... = -
R P (dump-refractory-cd = dump-refractory~cd 1)
then move (see Fig. 5) | 7.
8 4 got-stimulation = false
5
If (got-stimulation = true) then oscillator if (cycle-counter = cycle-length)

then signal-generation and (cycle-counter = 0)
|

Neighbors: if (stim-level > detect_threshold)
then signal-perception

change behavior-state: signal-generation:
4 light beams, beam radius max. 20 patches,
trigger s-waves 60° beam angle; 30° blind spots between adjacent
L| if (dump-here = true and carry = true and wait-at- beams (see fig. 1C),
dump-cd = 0 and dump-refractory-cd = 0) then Ray tracing of light beam between two agents.
dump-refractory-cd = (cycles-wait * cycle-length) and |
cycle-length = (cycle-length - 5) signal-perception of neighbors:
y 4 photo sensors, 60° vision angle,
stop trigger s-waves and leave the dump 30° blind spots between adjacent photodiodes,
i{dumprhore:= rug and carry = fales ancl dump: If a signal is detected within the “leader-window”then
refractory-cd = 0) then dump-relractory-cd = ((cycle- know-leader-direction = true and got-stimulation = true;
length*® cycles-wait)* 2) and cycle-length =30 + 1 Store the maximum perceived stimulus intensity
load dirt particle perceived in a single oscillator cycle.
if (dirt-pile-here = true and carry = false) then
cary=1
unload dirt particle Ly
if (dump-here = true and carry = true) then oscillator:
carry = 0 and know-leader-direction = 0 phase)'ol-penurbabbn = (cycle-counter/cycle-
If (phase-of-perturbation < 0.5) then
T phi = (1 + (0.8 * phase-of-perturbation));
If (phase-of-perturbation >= 0.5) then
lea jed-dump: phi= (1 + (0.8 * (phase-of-perturbation - 1)));
wait-at-dump-cd = 0, phi = phi + 0.009;
dump-refractory-cd = ((cycle-length * cycles-wait)* 2) new-cycle-length = (cycle-length * phi);
cycle-length = 30 + 1 cycle-counter = (round(new-cycle-length - cycle-
counter))

Figure 4. Instruction blocks executed by every agent in each simulation step. All agents execute eight logical program blocks in each
simulation step. Agents could not execute the next block before all other agents finished the current block. *-cd refers to a variable holding
a value that is count down by 1 in every simulation step.
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Figure 7. The influence of agent density and locomotion speed on swarm performance and agent interactions. In simulations of the SCS the
mean quantity of delivered dirt particles which were counted at the dump within a simulation period of 5000 steps depends on the number of
agents in the arena and the locomotion speed of agents (A). An increase of swarm performance was accompanied by an increase in the
average time (simulations steps) each agent spent in escaping from collisions (B). (C) shows the temporal evolution of the number of
delivered dirt particles collected within 12 long lasting simulation runs performed under optimal conditions. The agent density was 300 and
the speed was 0.35 patches per step. The data shown in (A) and (B) represent the mean = standard deviation obtained from 12 simulation
runs.
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Figure 8. Collective decision making. Diagonally arranged
obstacles create two asymmetrically arranged gates. One of these
gates created a shorter (dotted arrow) path and the other gate created
a longer path between the dirt pile (black square) and the dump
(gray square) (A). The number of agents passing the gate belonging
to the shorter path ((8), white bars) and the number of agents
passing the gate belonging to the longer path ((B), gray bars) were
counted in 12 simulation runs.



15. Chain Based Path Formation in Swarms of Robots

Nouyan S., Dorigo M.

In M. Dorigo and L. M. Gambardella and M. Birattari and A. Martinoli and
R. Poli and T. Stutzle, editors, Proceedings of ANTS2006, pages 120-131,
Springer Verlag, Berlin, Germany, 2006

Abstract. In this paper we analyse a previously introduced swarm in-
telligence control mechanism used for solving problems of robot path
formation. We determine the impact of two probabilistic control param-
eters. In particular, the problem we consider consists in forming a path
between two objects which an individual robot cannot perceive simulta-
neously.

Our experiments were conducted in simulation. We compare four differ-
ent robot group sizes with up to 20 robots, and vary the difficulty of the
task by considering five different distances between the objects which
have to be connected by a path.

Our results show that the two investigated parameters have a strong im-
pact on the behaviour of the overall system and that the optimal set of
parameters is a function of group size and task difficulty. Additionally,
we show that our system scales well with the number of robots.
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Fig. 1. (a) Initial situation. Robots are indicated by the small white circles. Their
limited sensing range is indicated by dashed circles. The task is to form a path between
the nest and the prey. (b) The robots search for the nest and once they find it they
start self-organizing into randomly oriented chains. (¢) When a chain perceives the
prey a path is formed.
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Fig. 3. (a) A chain with a cyclic directional pattern. The small circles represent robots
that have formed a chain that connects a nest with a prey. Three colours are sufficient
to give a directionality to the chain. The large circles surrounding the robots indicate
their sensing range. (b) Alignment of a chain member. If the angle « is less than 120°,
the central chain member aligns with respect to its closest neighbours.
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Fig. 4. . State diagram of the control. Each circle represents a state (i.e., a behaviour).
Edges are labelled with the corresponding conditions that trigger a state transition.
The initial state is the search state. P._,. (and P._,. respectively) is a boolean variable
which is set to true, if R < P... (R < P._.), and to false otherwise, where R is a
stochastic variable sampled from the uniform distribution in [0, 1], and Pe. (Pe—e) is
the probability per time step to aggregate to (disaggregate from) a chain.
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Fig. 6. For six selected parameter sets (P.—., P.—.) (a) the exploration rate—defined
as the percentage of the explored area within the arena—and (b) the length of the
longest chain are displayed. The parameters were selected according to their success
in the setups with N = 10 robots. The setup for which a parameter combination is
most succesful is indicated below the probability values. Note that the combination
(Peesc, Peese) = (0.125,0.004) is the most successful one for both setups (N, D) =
(10,1.8) and (N, D) = (10,2.4). Additionally, two parameter sets were selected by
hand in order to allow for a better understanding of the overall effect of the probability

values.



CpaBHeHME COCTOSIHMA COBPEMEHHON HAYKH C MMpeAIo/iaraeMbiMU

1 eJIAMHU MaruCTepCcKoi Auccepranuu

NccnepoBaHuAa B 06n1acty rpynnoBoi poboToTEXHUKN NpeacTaBieHbl 40CTaTOYHO
LUIMPOKO, B cBOBOAHOM A0CTYNE HaxoauTcAa 06WMPHOE YMCI0 MaTepUanos.

Tem He meHee, UCCNeA0BaHUI METOA0B UCKYCCTBEHHOMO MHTE/I/IEKTA Ha 3apaHee
He M3BECTHOM pPacno/IOKEHUN POBOTOB-LENE HAa NNOCKOCTU OBHaApy)KeHO He
6b1n10. TakXKe He 6biNo 0O6HAPYKEHO B KpUTepUAX 3GDEKTUBHOCTM PasNIUYHbIX
aNropUTMOB CYMMapHOTo yraa noBopoTa.



